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Drift-wave eigenmodes in toroidal plasmas

Liu Chen and C. Z. Cheng
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(Received 27 June 1979; accepted 8 August 1980)

The eigenmode equation describing ballooning drift waves in torcidal plasmas is investigated both

analytically and numerically. Two branches of eigenmodes are identified. One is slab-like and the other is a
new branch induced by finite toroidal coupling. The slab-like eigenmodes correspond to unbounded states and
experience finite shear damping. The toroidicity-induced eigenmodes, however, can become local quasi-
bounded states with negligible shear damping. Both branches of eigenmodes may exist simultaneously. The

corresponding analytical theories are also presented.

I. INTRODUCTION

Recently, there has been active interest in the stabil -
ity properties of drift-wave eigenmodes in sheared
magnetic fields. A crucial point to realize in stability
analysis is, in the presence of finite magnetic shear,
drift-wave eigenmodes in slab geometries experience
anti-well potential structures and, therefore, finite
damping due to energy convecting away from the mode-
rational surface. The existence of this shear-induced
convective damping or, simply, shear damping was
first pointed out by Pearlstein and Berk.! On the other
hand, as first emphasized by Taylor,? the shear damp-
ing mechanism may be modified significantly in toroidal
plasmas, such as tokamaks. The physical arguments
are as follows: In toroidal geometries, the mode-ra-
tional surfaces corresponding to different poloidal mode
numbers are closely packed. Due to toroidal effects,
such as curvature drifts, the neighboring poloidal
modes are coupled. The drift-wave eigenmode centered
about one particular mode-rational surface will there-
fore be affected by the wave energies which convect
away from the neighboring eigenmodes. In other words,
toroidal -coupling effects can modify the anti-well po-
tential structure and, thereby, the shear damping
mechanism. Using a model toroidal-coupling term,
Taylor, in fact, demonstrated that the shear damping
could be nullified. In his analysis, Taylor first reduced
the two-dimensional eigenmode equation to a one-dim-
ensional one by employing a representation now widely-
known as ballooning-mode representation,®® since its
rigorous formulation was first developed in works
treating ideal magnetohydrodynamic ballooning modes
with high toroidal mode numbers.?”* The resultant mod-
el one-dimensional eigenmode equation then became an
ordinary differential -difference equation with the differ-
ence operator originating from the toroidal -coupling
term. Taylor then made the so-called strong-coupling
assumption which approximated the difference operator
by a differential operator (see Sec. II), thereby, further
reduced the equation to a readily soluble second-order
ordinary differential equation. Taylor’s analytical ap-
proach (i.e., ballooning-mode representation and strong-
coupling assumption) was later adopted, independently,
by Tang'® and Horton et al.,'* to investigate a rigorously
derived eigenmode equation for drift waves in an axi-
symmetric, large-aspect-ratio tokamak with concentric,
circular magnetic surfaces where toroidal coupling ap-
peared due to ion VB and curvature drifts. Their re-
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sults indicate that nullification of shear damping only
occurs when the shear is weak; S=7q'/g< 3. Here,
q=7B,/RB, is the usual safety factor of a tokamak. In
fact, for normal tokamak shear $>3%, their results pre-
dict that shear damping is further enhanced by toroidal
coupling. The validity regime of the strong-coupling
assumption, however, can be shown to be rather re-
strictive; i.e., generally, it is valid only for rather
weak toroidal coupling. We are, thus, motivated to
examine this problem without making the strong-coupling
assumption. That is, for normal tokamak parameters,
we find drift-wave eigenmodes with negligible shear
damping do exist even if the shear is strong (5> 3).
Furthermore, we find that these quasi-marginally
stable eigenmodes are associated with a new eigenmode
branch which is induced entirely by toroidal coupling;
that is, this (toroidicity-induced) eigenmode branch
cannot be regarded as a continuation of the slab
(Pearlstein-Berk) eigenmode branch into a toroidal
plasma. In this respect, our results also differ from
those obtained in two recent works,”* ® where the quasi-
marginally stable eigenmodes are shown to be smoothly
connected to the slab eigenmodes. While we do not
have an exact explanation for this difference, a plaus-
ible explanation may lie in the different numerical
schemes employed to solve the eigenmode equation.
Since the eigenmodes are damped and, therefore, di-
verge asymptotically along the real axis (see Sec. III),
it becomes difficult to apply the numerical shooting
scheme along the real axis and, in fact, resulis thus
obtained could be erroneous. In the present work, we
avoid this numerical difficulty by employing the inter-
active WKB-shooting code developed by White.!? In
this code, one first uses the Stokes’ diagram to locate
the subdominant regions in the complex plane, where
the solutions decay asymptotically. Numerical shooting
is then performed along an axis which ends inside the
subdominant regions. Employing this scheme, not only
the numerical difficulty disappears, but one can also
readily perform the relevant phase integral to identify
the quantization number of the eigenmode.

The theoretical model and the corresponding drift-
ballooning eigenmode equation are given in Sec. II. In
Sec. III, we discuss the relevant boundary conditions.
Applying these boundary conditions, the eigenmode
equation is solved numerically using the interactive
WK B-shooting scheme and the results are presented in
Sec. IV. The corresponding analytical theories are des-
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cribed in Sec.V. Final conclusions and a discussion are
given in Sec. VI

I). THEORETICAL MODEL AND EIGENMODE
EQUATION

Let us consider electrostatic drift waves in an axi-
symmetric, large-aspect-ratio torus with concentric,
circular magnetic surfaces. We adopt the usual (7, 0, £)
coordinates corresponding, respectively, to the (minor)
radial, poloidal, and toroidal directions. The pertur-
bed potential ¢ can be expressed as

o, 6,6)=2 b, (s)expli(m,6+j6-nE-wt)], (1)
J

where | j| <m,, s=(r-7,)/57,, 7, is the reference
mode-rational surface m,=nq(r,), Ar, =1/kgs, kg
=m,/7,, and s=rq'/q at ¥ =7, TFollowing standard pro-
cedures (see Ref. 10), the two-dimensional eigenmode
equation can be derived straightforwardly and is given
py?+ 10- 11

[L(s,5)+Qy(s,i) —€,T/R]$,(s)=0, (2)

" L=bgy(82d?%/ds*-1) , (3)

Q,=1/2-1+{(s-j)/n,Q]*, @)
and

Ty (8)= byay(8)+ Byoy(5)+3 S35 [ $141(8) = §y-,(8).  (5)
Here, be—keps, Pe =€y /wyy, o= (T, /M2 Q=w/
wx,, Ns=qby/?/e,,€,=7,/R, #;* =| dInN/dr|, W,
—bl/2 c /T,., and R is the major radius. In deriving
Eqs. (2) (5), we have assumed 7=7T,/T; > 1 and made
the small ion Larmor radius as well as fluid ion ap-
proximations, Furthermore, we have only kept the
adiabatic electron response and ignored any electron
destabilizing, temperature gradient, or trapped par-
ticle effects. We note that T, as defined in Eq. (5),

is the toroidal-coupling operator due to ion VB and
curvature drifts. We remark that we have suppressed
the destabilizing effects here in order to concentrate

on the shear damping mechanism in toroidal plasmas.
However, it needs to be emphasized that (as stability
analyses in slab geometries have clearly indicated)
modifications in the shear damping mechanism will have
a direct implication on the stability properties.

Since, typically, |m | ~ |n| ~ | 7,/p,| ~0(102~10%), we
may adopt the large-n ballooning-mode forma.llsm 3-8
In zeroth order, we have, withz=s-j, ¢, (s)=®(z) and
qb,“(s) =&(z ¥1); i.e., the eigenmodes are composed of
identical structures centered at each mode-rational
surface. Equation (2) then reduces to a one-dimension-
al differential -difference equation; i.e.,

[L,+Q,(2)-¢€,T,/R]2(k)=0, (6)
where

L, =0y(5%d%/dz? =1), Q,(2)=1/Q —1+22/Q27? ,

and
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T1<I>=‘I>(z+1)+<1>(z—1)+§%[<1>(z—1)-~b(z+1)]. (7)

Fourier transforming Eq. (6), we then obtain

[@*/dan?+ n2Q2Q@, M) M) =0; —= <p<w (8)
where
Q2,1 =bg(1+5%7%) +1
-1/ +(2¢,/2) (cosn+ $1sinn) , (9)

and 1 can be regarded as the coordinate along the field
lines.3"® Equation (8) is the drift-ballooning eigenmode
equation to be analyzed. We note that Eq. (8) corre-
sponds to perturbations centered at the outside of the
torus and is similar to the equations derived by other
authors.%"% 101! Equation (9) shows that toroidal-cou-
pling effects introduce modulations on the otherwise
anti-well potential structures. We note that the strong-
coupling assumptlon, which approximates T, as T,
=~[2+(1 -2 5)d?/dz?]® (z), is equivalent to expandlng
Q(82,n) about =0 to 0(?). Thus, this assumption only
considers eigenmodes highly localized about =0 and,
therefore, is rather restrictive. Before proceeding
with the solution of Eq. (8), however, we need to dis-
cuss the relevant boundary conditions.

Il. BOUNDARY CONDITIONS

As |n| ==, Q= b,5%, and for $=exp(+i ["k,dn) ,
we have
ky~Qn,bY/2sn , (10)
or

q;-—exp(t Qn, ble/zgnz/Z) . (11)

For unstable eigenmodes (Im £ >0), that ¢ must be
spatially decaying requires usto take the plus sign; i.e.,

$ —~ exp(i2n, b/ 2 s12/2) . (12)
Noting that
a2 /ak, ~ (n, by/2 3n)1 (13)

the boundary condition, as given by Eq. (12), then cor-
responds to outward wave energy propagation. On the
other hand, there is difficulty in applying the outgoing-
wave boundary condition, Eq. (12), to the marginally
stable and damped eigenmodes (ImQ <0), which will not
asymptotically decay. This difficulty, however, can be
readily resolved by noting that, in the original configu-
ration (z) coordinate, the outgoing-wave boundary con-
dition is equivalent to the asymptotically decaying con-
dition if the linear ion Landau damping term is includ-
ed.! One would, therefore, expect similar properties
in the Fourier transformed 7 coordinate.”

Retaining the ion Landau damping term, it is easy to
show that the potential structure @ is modified to be

Q=Q+i7Vr & exp (- ), (14)
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where £; is an operator, & =(7/2)'/21,Q/|id/dy|, and
we have assumed | £ | >1 in deriving Eq. (14). Since
[£,1>1, we may treat the ion Landauy damping term
perturbatively. Thus, as |n| —«, the WKB wavenumber
becomes

ky~ky[1+i7VT & exp(~ £)/2b452?], (15)
where #, is given by Eq. (10) and
£ = (1/2 20,/ | kol ~(7/206)/3/3(1] . (1e)

Meanwhile, we have

- exp(eif kydn). an

Since £;>0, the requirement that the solutions decay
asymptotically, again, leads us to take the plus sign,
i.e., the outgoing-wave boundary condition, Eq. (12).
Indeed, from Egs. (15) and (16), we note that even in
the 1 coordinate the boundary condition, Eq. (12), des-
cribes the wave energy being propagated outward and
absorbed by ion Landau damping at |5| =+%. Thus,

Eq. {12) dictates that for damped eigenmodes (ImQ

<0) the solutions be asymptotically divergent. With the
appropriate boundary conditions determined, the eigen-
value problem as posed by Eq. (8) is thus completely
specified.

V. NUMERICAL RESULTS

In this section, we present the numerical results of
eigenmode analyses using the interactive WKB-shooting
code developed by White.!? Detailed descriptions for
this code are given in Ref. 12 and will not be repeated
here.

In the present work, we have found that there exist
two branches of eigenmodes. One is slab-like; i.e.,
this branch represents the continuation of the slab
eigenmodes into the toroidal geometries. The other
branch of eigenmodes is induced by the finite toroidal
coupling; i.e., it has no counterpart in the slab limit
and, in this sense, is a new (toroidicity-induced) branch
of eigenmodes. In order to better understand the quali-
tative differences between the two eigenmode branches,
it is helpful to examine the corresponding Stokes’ dia-
grams, potential structures - @, (&2, 1,) and eigenfunc-
tions (5('!;,); which are shown in Figs. 1 to 4, Figure 1
shows those for slab-like eigenmodes. We note that the
complete Stokes’ structure is rather complicated and,
therefore, only three relevant pairs of turning points
and associated anti-Stokes’ lines are shown. Referring
to Fig. 1(a), P correspond to the slab (Pearlstein-
Berk)-like turning points (i.e., they exist even if tor-
oidal coupling is absent); meanwhile, +T, and =T, cor-
respond to turning points induced by the finite toroidal
coupling. As shown in Fig. 1(b), the potential structure
is an anti-well. The wave energy, therefore, can freely
convect outward and the eigenmodes are damped. The
boundary condition, Eq. (12), thus dictates that regions
{1) and (i)’ be dominant and, hence, regions (ii) and
(ii)’ be subdominant. The corresponding WKB eigenval-
ue condition is then determined by the slab-like turning
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FIG. 1. Typical (a) anti-Stokes’ plot, (b) potential structure,
and (c) eigenfunction for the slab-like eigenmode branch. +P,
+T4, and +T, correspond to turning points in the complex 13
plane. s and d denote, respectively, subdominant and domi-
nant regions.

points, xP; i.e,,

P
ﬂnsfPQ”zdn=<n+-12-)fr, n=0,1,..., (t8)

and, therefore, the eigenmodes are called slab-like
eigenmodes. We note that Eq. (18) is useful not only in
identifying the quantization number of the eigenmode,

but also in tracking its evolution as the physical parame-
ters change. In Fig. 1(a), we also indicate the axis in
the complex plane along which the numerical shooting is
done. Using the obtained eigenvalue @, we can then plot
the eigenfunction along the real n axis <13(n,), as shown

L. Chen and C. Z. Cheng 2244
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FIG. 2. Typical (a) anti-Stokes’ plot, (b) potential structure,
and (c) eigenfunction for the weak toroidicity-induced eigen-
mode branch. The rest is the same as Fig. 1.

in Fig. 1(c) for the =0 eigenstate, which clearly ex-
hibits the asymptotically divergent behavior.

As to the toroidicity-induced eigenmodes, their pro-
perties depend on the shear strength § and the toroid-
icity €,. Three cases have been identified: (i) $> § and
small €,, (ii) $> § and large €,, and (iii) $< ;. The
corresponding Stokes’ diagrams, potential structures,
and eigenfunctions are sketched in Figs. 2, 3, and 4,
respectively. Note that only those eigenmodes which are
quasi-marginally stable are illustrated. Since, as €,
is increased, case (i) evolves into case (ii), we classify
case (i) and case (ii) as the weak and strong toroidicity-
induced eigenmodes, respectively. Case (iii) is also
clagsgified as a strong _toroidicity-induced eigenmode be-
cause its Stokes’ diagram is similar to that of case
(ii). From Figs. 2-4 it is clear that these quasi-mar-
ginally stable toroidicity-induced eigenmodes are char-
acterized by eigenstates bounded by local potential
wells, which may be localized either about or away

2245 Phys. Fluids, Vol. 23, No. 11, November 1980

s (i)

Shooting
Axis

(b) -Qr

o\

FIG. 3. Typical (a) anti-Stokes’ plot, (b) potential structure,
and (c) eigenfunction for the strong toroidicity-induced eigen-
mode branch with § = »¢’/q >3. The rest is the same as Fig. 1.

from 71=0. Contrary to the slab-like branch with anti-
well potentials, the outward convection of the wave en-
ergy occurs here only through the tunneling leakage;
therefore, we may expect the shear damping rates to be
significantly reduced. In this respect, we can regard
these eigenmodes as quasi-bounded states which are
quasi-marginally stable. The plots of eigenfunctions,
Figs. 2(c) and 3(¢) further demonstrate the quasi-
bounded nature of the eigenmodes. Referring to Figs.

-Qr

N N
N "

FIG. 4. Typical potential structure for the strong toroidicity-
induced eigenmode with s <%. The anti-Stokes' plot and eigen-
function are similar to those in Fig. 3.
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2(a) and 3(a), the WKB eigenvalue conditions for the
weak and strong toroidicity-induced eigenmodes are,
respectively,

T 1
Qnsf 1 Q1/2dn=(n+§>1r+ o, , (19)
P

and
T
an, [ @ /2an=(ueg ety torn=0,1,..., @0
-7

where 6, and §, correspond to tunneling leakage. Equa-
tions (19) and (20) indicate that the toroidicity-induced
turning points, T, and +T,, play rather crucial roles
in this eigenmode branch and, thus, we identify it as
the toroidicity-induced eigenmode branch. While so far
we have only discussed the quasi-marginally stable
eigenmodes, we note that cases (i) and (ii) also possess
damped eigenmodes with the turning points, +P, 7T,
and +7T,, located appreciably away from the 7, axis.
The WKB eigenvalue conditions remain essentially the
same as those given by Egs. (19) and (20) and can be
used to identify these damped eigenmodes as the high-
er-n eigenstates of the toroidicity- induced branch.

The corresponding potential structures and eigenfunc-
tions, however, look very similar to those of the slab-
like branch. This further illustrates the desirability of
using the Stokes’ diagrams to identify the eigenmode
branch.

We have examined the evolution of the two branches
of eigenmodes as the parameters s and €, are varied.
Only the # = 0 eigenstate, which is the least shear
damped, is studied here. In the following results, we
have fixed b, =0.1 and g=1. Figures 5 and 6 plot the
eigenfrequencies Q =, + 2, vs €, for 5=1, and 0.3,
respectively. For comparison, we also show the shear-
damping rates in the slab approximation (i.e., without
the toroidal-coupling term) €, = - S¢;, /q(1+bg). Figure
5 shows that for 5=1 both eigenmode branches can ex-
ist simultaneously. It is interesting to note that, as

0.2

0 0.1 0.2 0.3 0.4 0.508

FIG. 5. Plot of eigenmode frequencies @ vs €, for by=0.1,
g=1, and §=1. o, e and & correspond, respectively, to the
n =0 slab-like, =0 and n >0 toroidicity-induced eigenmodes.
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I ! |
4 -0,
045 0.1 0.2 0.3 0.4°0!

€n

FIG. 6. Same as Fig. 5, except §=0.3.

€,~0, Q (slab-like)~1/{1 + by) (i.e., the local disper-
sion relation); meanwhile, Q(toroidicity-induced)— 0.
That the two limiting behaviors are qualitatively differ-
ent further supports the observation that these are two
distinctive eigenmode branches. As €, increases, the
damped slab-like eigenmode evolves into a damped tor-
oidicity-induced eigenmode at €, = 0.075. Meanwhile,
the corresponding shear-damping rate is larger than
that in the slab approximation. On the other hand, the
damped weak toroidicity-induced eigenmode at small

€, becomes quasi-marginally stable at €, =~0.075 and,
as €, is further increased, evolves into a strong tor-
oidicity-~induced eigenmode at €, ~0.2. At quasi-mar-
ginal stability, the shear-damping rate is negligibly
small; typically, |Q,|~0(107%-107%).

In the weak shear (§=0.3) case, Fig. 6 shows that the
damped slab-like branch, which exists for €, < 0,02, is
connected to the strong toroidicity-induced branch,
which is quasi-marginally stable. Thus, in this case,
there exists only a single branch of eigenmodes for a
value of €,. Meanwhile, contrary to the =1 case, the
shear-damping rates of the slab-like branch are some-
what reduced by the toroidicity.

Figure 7 shows the dependence of the eigenmodes on
the shear strength § for a fixed €,=0.1. The slab-like
eigenmode now exists for large 3 and, as § is reduced,
is connected to a damped toroidicity-induced eigenmode
at S=~2. In this respect, its dependence on $ is re-
versed to that on €,. Again, the damping rate is larger
than that in the slab approximation. As to the toroid-
icity-induced eigenmode, it is interesting to note that
a quasi-marginally stable eigenmode exists even at
large 8. As § is reduced, the eigenmode evolves from
a weak toroidicity-induced to a strong toroidicity-in-
duced eigenmode at §=~0.6. The damping rate, mean-
while, is negligibiy small for the entire range of $.

In the following, we summarize the numerical re-
sults:

(1) There exist two distinctive eigenmode branches,
one is the slab-like and the other is toroidicity-induced.

(2) For normal shear s >%, the two branches can ex-~
ist simultaneously. For weak shear s< 3, however,
they are connected.

L. Chen and C. Z. Cheng 2246
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FIG. 7. Plot of @ vs § for by=0.1, ¢=1, and €,=0.1. The
other notations are the same as Fig. 5.

(3) The damped slab-like eigenmode exists when
either, with § fixed, €, <¢€,, or, with €, fixed, §>§,.
For normal (weak) shear, the shear-damping rate is
further enhanced (reduced) by the toroidal-coupling ef-
fects.

{4) For normal (weak) shear, the slab-like eigenmode
is connected with a damped (quasi-marginally stable)
toroidicity-induced eigenmode. The damped eigenmode,
again, has an enhanced shear-damping rate.

(5) For fixed normal shear, the toroidicity-induced
branch becomes quasi-marginally stable when €, >¢€_,
and can remain so even for §>1. For €, <€y, it is
damped and, furthermore, 2 ~0ase¢, -0,

The results described in this section provide useful
insights in developing analytical theories, which, in
turn, not only explain these results but also, more im-
portantly, generalize the results to a wider parameter
space.

V. ANALYTICAL THEORIES
A. Slab-like eigenmodes

For this branch of eigenmodes, the complex turning
points are located near 1 =0; i.e., |P| <1(cf. Fig. 1).
Therefore, we may assume |7| <1 and approximate @ as

R, 7)>Q(R,0+Q" (Q,0m?/2, (21)

2247 Phys. Fluids, Vol. 23, No. 11, November 1980

where

QR,0=1+by-1/Q+2¢,/Q, (22)

and

Q"(Q,0)=2[b,5%+€,(28 -1)/Q]. (23)

Equation (8) then becomes a standard Weber’s equation
and can readily be solved. Applying the outgoing-wave
boundary condition, we obtain the following dispersion
relations!®r

3 /
Q- 1-2, _, (2n+1)e, (ngre,,(zs—l))1 2;
1+dg gq(l+by) b, Q
n=0,1,+-, (24)

Since © > 0, Eq. (24) clearly shows that for §>z (§<3),
the shear damping is further enhanced (reduced) by
toroidal coupling. We note that assumption |P | <1lis
identical to the strong-coupling assumption. Further-
more, while the eigenmodes are localized about =0
in the complex plane, they are extended along the 17,
coordinate.

For §<3, the slab-like branch disappears when the
anti-well potential structure about n =0 is absent; i.e.,
Q"(%,0)=0. From Egs. (23) and (24), we obtain the
critical value of €,, €, as

€oar™ b §2/[(1+0) (1-25)+ 20,357 .

For by=0.1 and §=0.3, we find €., = 0.02 in agreement
with the numerical result (cf., Fig. 6). For $>3, how-
ever, @" (§,0) never vanishes and the slab-like eigen-
mode evolves into a damped toroidicity -induced eigen-
mode when the strong-coupling assumption (|P|<1)
breaks down at €, =€,,,, which is approximately given
by

(25)

Ec32=q2bea/(1+be+2q2b9a) ’ (26)
with @ =8 -3 +5[(25 —1)2+ (25/¢)2]*/2, For 5=1 and b,
=0.1, we find €, ~ 0.1 which agrees reasonably well
with the numerical result shown in Fig. 5.

B. Toroidicity-induced eigenmodes

The numerical results described in Sec. IV indicate
that this eigenmode branch becomes quasi-marginally
stable when €, 2 €. For §< 3§, we have €,, =€, given
by Eq. (25). In the following, we shall derive the analy-
tical expression of €., for §>3. Ate, =€, the corre-
sponding potential structure, -@, (2,7, ), is shown in

-Qr

TN N %

/\/

FIG. 8. Potential structure for ¢, = €_p,, Where the weak
toroidicity-induced eigenmode becomes quasi-marginally
stable.
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Fig. 8. From Fig. 8, we have the following five condi-
tions:

Qr (9,7)2)=0 ’ (27)

Q; (an2)=0 b (28)

@, (Q,1,)=0, (29)

Q, (‘Q’ns):O » (30)
and

Qn,fﬂz Q'/2dn =(n+-;->1r, n=0,1,... (31)

N3
for the five unknowns; 71, 7,, 73, €, and =8,.
Note in Eq. (31), that we have neglected the tunneling
leakage and, therefore, §2. is purely real. Since an-
alytical expressions for Eq. (31) are generally diffi-
cult to obtain, we approximate the potential well about
1, to be parabolic. Thus, as a replacement for Egs.
(30) and (31), we have, for the n =0 eigenstate, the
condition

Q, (8, ,m,)=[-Q" €, ,n,)/be)* (e, /a2, ) . (32)

To make further analytical progress, we shall solve
Egs. (27), (28), (29), and (32) by successive approxi-
mations; that is, we assume 5, and 7, are sufficiently
close to n,, where @, (n,)=0. We thus, letn,=1,-6,
and 1,=7,+0, with §,, 6,< 1, Correspondingly, we let
€,rp=€o+€, and Q, =Q,+8,, such that |e, /e |, |Q,/9,]
<1, Carrying out the straightforward algebra, we ob-
tain

€ora=€,l 1+82[ 1+ 25 (1 +7b8)e, ]}, (33)
where
€,=bg 8/[1+bg(1+8%1% - 287)], (34)

g =(a,/87q?,)'/%, b =(2/a,)*’? and a,=1+(5-1) (45
—1)/&#2, An interesting property predicted by this
analytical theory is, as either b,—~® or s—«, we have

€cT2”(1+d1)do/§E€c s (35)

where dy=1(7% = 2+57%) and d, =p2[1+ 2(1+ 7b,8)d,).
That is, there exists a maximum value of €,,, €,
which is a constant for a fixed §. This predicted pro-
perty is consistent with the numerical result that the
toroidicity-induced branch remains quasi-marginally
stable for § > 1. For ¢=8=1, in Fig. 9 we have plotted
the analytically predicted €_,, vs b,. As can be seen,
the analytical predictions agree rather well with the

€cv2

Analytical

== Numericai

005 L L 1
0.1 0.2 0.3 0.4 0.5

bg
FIG. 9. Plots of €5, vs by for g=5=1.
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numerical results. Meanwhile, in this case, we find
€.~0.14.

Finally, we remark that, as €, ~ 0, the Stokes’ dia-
gram indicates that the turning-point pairs + (P, T)),
while slowly migrating toward infinity in the complex
plane, tend to coalesce toward each other. Using the
coalescence condition @ ~Q’~0 plus ImP=ImT,>1,
one can readily show the small €, behavior of Q; par-
ticularly, |Q| -0 as ¢, ~0.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have examined the shear damping of
the drift-wave eigenmodes in toroidal plasmas. The
toroidal-coupling effects considered here are due to the
ion VB and curvature drifts. The corresponding drift -
ballooning eigenmode equation, derived via the balloon-
ing mode formalism, is then analyzed numerically using
the WKB-shooting scheme. Itis found that toroidal cou-
pling introduces modulations to the potential structures.
Two eigenmode branches are then found to exist. One
is slab-like and the other is a new branch induced by
the finite toroidal coupling. The slab-like eigenmode
branch exists for small toroidicities and has anti-well
potential structures. The eigenmodes, thus, corre-
spond to unbounded states and experience finite shear
damping. For §=rq'/q>§, toroidal coupling further
enhances the shear-damping rates. For §< 3, how-
ever, the shear-damping rates are somewhat reduced
by the toroidal effects. On the other hand, the new
(toroidicity -induced) eigenmode branch, which has no
counterpart in the slab limit, can have eigenmodes
which are quasi-bounded by local potential wells.

Shear damping occurs only through tunneling leakage
and is, generally, negligible. The quasi-bounded tor-
oidicity-induced eigenmodes, therefore, can be re-
garded as quasi-marginally stable. For certain par-
ameters, both eigenmode branches can exist simul -
taneously. We have also developed the corresponding
analytical theories, which agree both qualitatively and
quantatively with the numerical results. An interesting
property predicted by the analytical theories is that
quasi-marginally stable toroidicity-induced branch can
exist even whenb,, §> 1 for reasonable toroidicities, i.e.,
€,~ 0(107%),

Since destabilizing effects, such as electron dissipa-
tion, are suppressed here in order to concentrate on
the shear damping effects, this work, therefore, does
not answer the stability question. However, some re-
marks may be made on the implication of the present
results on the stability properties. Let us concentrate
on the universal drift mode. In this case, electron
dissipation can easily be incorporated into the one-~
dimensional differential -difference eigenmode equation,
Eq. (6). As noted in Sec. V, we may apply the strong-
coupling assumption for the slab-like branch. Equation
(6) can then be reduced to a second-order differential
equation and readily solved.!® ' !3 Generally speaking,
the results show that unstable eigenmodes exist only
for weak shear, i.e., §<%. As for the quasi-marginally
stable toroidicity-induced eigenmodes, it may be ex-
pected that finite electron dissipation can render the
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eigenmodes absolutely unstable. This expectation, how-
ever, remains to be verified.

The existence of the toroidicity-induced eigenmode
branch clearly indicates that, contrary to conventional
thinking, toroidal-coupling effects cannot be simply
regarded as (regular) perturbations to the slab eigen-
mode branch. In this respect, it is interesting to note
the possibility that trapped particles can play not only
the usual destabilizing role but also, through the as-
sociated toroidal-coupling effects, the new role of in-
troducing new eigenmode branches.

Finally, we remark that the present analysis can
easily be extended to consider perturbations which may
be centered away from the outside of the torus.
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